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ABSTRACT

An algorithm is presented for copying an arbitrary list structure into a block of
contiguous storage locations without destroying the original list, Apart from a fixed
number of program variables, no auxiliary storage, such as a stack, is used. The
algorithm needs no mark bits and operates in linear time. It is shown to be

significantly faster than the best previous algorithm for the same problem.
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1. Introduction

The problem considered in this paper is the creation of a copy of an arbitrary
LISP-type list structure without the use of a stack or any other working siorage which
depends on the size or complexity of the list to be copied. Apart from a fixed number
of program variables, the only storage available is that occupied by the original list
and the copy. Copying differs from moving a list (1] in that the original structure may

not be destroyed during processing.

Algorithms for the constant workspace copying problem have been given by
Lindstrom [7] and Fisher [4]. Lindstrom showed how to copy an arbitrary n-cell list
structure in time O(n log n) if a mark bit is available in each cell, and in time O(n2) if
there are no mark bits; both algorithms can copy into an arbitrary list of availabie
cells. Fisher’s algorithm takes only linear time and needs no mark bits, but makes a

minor sacrifice in generality: the free list must be a block of contiguous cells.

The algorithm to be presented in this paper is significantly faster than Fisher’s,
and has the same free-list restriction. While Fisher's algorithm requires three passes
over the data, the algorithm of this paper requires slightly more than two full passes,
depending on the degree of sharing in the structure to be copied. In addition, a pass
here is more efficient than in Fisher's algorithm, especially when there are many

pointers to atoms.

The principal difficulty in copying lists is that several pointers can point to the
same cell. The algorithm will therefore be introduced in three stages which reflect the

complexity of these multiple references. In the following section an algorithm is given
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for copying lists when there is no sharing at all. (This algorithm is also presented in
(3] It appears here for expository purposes.) Section 3 extends this algorithm to
cover an intermediate case, and in Section 4 arbitrary list structures are allowed. A
comparison of the algorithm of Section 4 with Fisher’s algorithm is offered in Section 5

and the Appendiy, Section 6 concludes the paper.

2. Copying a binary tree

Following LISP conventions [8], assume that a st cell contains twn pointers,
called car and cdr, which may point to any list cell or to non-list items called atoms.
Atoms themselves are not copied. Each list cell Occupies one memory location, In this
Paper all algorithms trace lists in the cdr direction; that is, they trace cdr before car if

both point to lists.

We will assume in this section that the list structure to be copied contains no
multiply-referenced cells, and is therefore a binary tree with rion-link information at
the leaf nodes only. This assumption greatly simplifies the copying task. Observe that
cells with at least one atom can be dealt with in a single visit: atoms are copied
directly, and the Jist pointer (if there is one) in the copy will point to the next

consecutive cell in the free area.

Clearly, then, the only difficulty in copying a structure of this kind is what to do
when a cell contains two list pointers, Were sufficient auxiliary storage available, such

cells could be stacked {5), but this would violate the constant workspace constraint.

We can evade this problem by keeping a stack in the copy of the structure
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itself. Figure 1 shows how this can be done. The list structure to be copied is shown
in Figure 1(a). In Figure 1(b) cdr-direction tracing has stopped temporarily at a cell
with two atoms. The first four cells of the list have been visited, and copies of cells
with at least one atom have their final values. The variable avail points to the next

free cell in the copy area.

Copies of cells with two list pointers have been linked together in LIFO order on
the "k-iist"; this is a linked stack of cells on which more work needs to be done. The

cars of such cells have been copied without change; this permits tracing of the lists

they point to when the k-list is "popped". As further lists are traced, the k-list will

grow and shrink exactly like a stack. Whenever tracing stops at a cell with two atoms,

car of the first cell on the k-list is the next sublist to be traced.

Two crucial observations need to be made about cells on the k-list. First, the
final value of cdr of these cells is a pointer to the next sequential cell in memory. This
redundancy is what permits the k-list links to be kept in the new cdrs. Second, the
final value of car of such a cell is the value of avail at the time the cell is removed
from the k-list. This is apparent in Figure 1(b). Therefore both car and cdr may be

given their final values when the cell is popped.

Figure 1(c) shows what happens after the first k-list cell is removed and the
corresponding sublist traced. Figure 1(d) shows the structure after the last k-list cell

hes been removed and copying has finished.

Algorithm I, below, copies the tree structure pointed to by h into the block of

free storage beginning at location avail. On termination of the algorithm, v will point to
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Figure 1: Copying a binary tree. Cars are on the left, cdrs are on f é

the right, and NIL is represented by a diagonal slash. Dotted pointers
are those unchanged from the previous figure.
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; the copy, and avail to the next available cell in the copy area. Algorithra I is
significantly faster than the one given by Lindstrom [6], which requires three visits to
each cell; Lindstrom’s algorithm, however, can copy into an arbitrary free-list.
ALGORITHM 1 |

I Part A: Copy the top level of a list.
Al. [Initialize.] keNIL, veavail, and x«h. (x points to the current original cell.)
A2.[Get new cell.] n+avail, avail-avail+]. (n points to the copy of x.)

A3. [Process cell x.] Find the data types of car(x) and cdr(x). Go to the appropriate

box below:
cdr(x)
atom list
| car(n)ecar(x) car(n)«car(x)
atom cdr{n)«-cdr(x) cdr(n)«~avail
go to Bl x+cdr(x) |
car(x) | ’
car(n)+~avail car(n)~car(x)
list cdr{n)«cdr(x) cdr{n)«k
x+car(x) ken
x+cdr{x)
A4, [Loop.] Go to Step A2.
Part B: Find the most recently seen sublist.
B1. [Done?] If k=NIL then halt.
¢ B2. [Pop k-list.] tecdr(k), xecar(k), car(k)eavail, cdr(k)-k+1, ket, and go to A2.

3. Copying an (almos!) arbitrary list

Suppose now that the list structure to be copied may contain cells pointed to

more than once, that is, sharing and cycles may exist in the list. If Algorithm | were
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applied to such a structurz, the "copy" would be non-isomorphic to the original in that

shared cells would be copied as many times as there were paths to them from the
head of the list. And if there were cycles in the structure, Algorithm I would loop

indefinitely.

The traditional method for dealing with these problems is to plant a "forwarding
address" in (say) car of each celi of the original list when it is first visited [1, 4, 7, 9]
The forwarding address points to the copy of the cell in which it is found. If, during
tracing of the original structure, a forwarding address should be discovered where an
ordinary car was expected, a pointer to that cell could be "forwarded" to the copy, and
no spurious copies made. This technique will be used here. Since the new list area is
assumed to be a block of contiguous locations, checking for a forwarding address can
be accomplished by comparing a pointer with the address boundaries of the reglon.

Let the predicate new(x) be true if and only if x points to a cell in the new list area.

The forwarding address technique has two immediate consequences. First, an
old car displaced by a forwarding address must be saved somehow. This is simple
when car is an atom, for then old and new cars are the same; but if car is a list, old

and new cars will not in general have the same value, so the old value must be salted

away in the copy cell. The second consequence is that at some point the forwarding

addresses must be removed and the old cars restored. This suvggests a second pass

over the original structure, whose main purpose is the restoration of old cars.

The second pass must do other work as well. Observe that with each cell of the
original list are associated five quantities of interest (old and new car, old and new cdr,

forwarding address), but only four places to put them (car and cdr fields of the original
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cell and the copy). Obviously, ther, not all five items can be stored between passes;
some must be computed or recomputed during Pass Two. This computation is greatly
simplified by the fact that the second pass can mimic exactly the order in which the

tirst pass visits cells.

It will be convenient to identity pointers as of three types: pointers to atoms,
pointers to cells not yet visited during the current pass, and pointers to cells already
visited. Let "UV pointer" refer to a pointer to a "UV cell", that is, an unvisited one. An
"AV pointer" will point to an “AV cell", that is, an already visited one. These definitions
depend, of cout e, on the order in which cells are visited. An AV cell can be identified
during the first pass by the presence of a torwarding address in its car. During the
second pass, an AV cell is one in which car is not a forwarding address, that is, a cell
whose forwarding address has already been removed. When multiple pointers to a

single cell exist, one of them will be UV, and the rest AV.

We may now make a crucial observation about AV and UV pointers: the new
value of any UV pointer can be recomputed during the second pass, but the new value
of an AV pointer cannot. Consider first the case of a UV pointer. If it is followed
immediately after discovery during the trace, its new value will be a pointer to the

following cell in the copy area. I not, it must be car of a cell on the k-list, and its new

value will be the value of avail when the cell is removed. In either case the new value

can be recalculated during the second pass, provided the two passes visit cells in
exactly the same order. Therefore, no new values for UV pointers need to be stored

during the first pass.

Now consider an AV pointer. Its new value will be the forwerding address of

-7-
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the AV cell it points to. But during the second pass that forwarding address will be

removed before the AV pointer is encountered. Thus there is no choice but to store In

one of the four available places the new value of each AV pointer found.

If a pointer points to an atom, old and new values are identical, so only one
vaiue needs to be saved between passes. If a pointer is a UV pointer, only its old
value needs to be saved, since its new value can be recalculated during the second
pass. Only in the case of an AV pointer must two values be preserved. Recalling that
one of the available storage locations is reserved for 2 cell’s forwarding address, these

observations mean that only cells with two AV pointers require more than four places

to put things. This problem will be dealt with in Section 4; for the moment assume that

there are no such cells.

Note that if a cell has two UV pointers, only three items need to be saved. The
fourth place (the new cdr) can be used, happily, to store a k-list link, just 2s was done

in Algorithm I,

Figure 2 shows the operation of the two-pass algorithm on a list with shared
substructures and cycles. Figure 2(a) shows the original structure, and Figure 2(b)

shows the state just before the first cell is removed from the k-list. The cars of

original cells visited thus far have been replaced by forwarding addresses. Except for

cells on the k-list, all AV pointers in the copy have their final values, these having
been obtained from the appropriate forwarding addresses. Note that in Figure 2(b) k
points to a cell with an AV pointer in its car. When this cell is removed from the k-list,
its new car must be saved, as was observed above. Since the old car must also be

preserved, it is mocved to cdr of the new cell, where the k-list link is no longer needed.

-8~
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This is shown in Figure 2(c), in which both k-list cells have been removed and
Pass One is complete. The "s" in the first new cdr is a marker which indicates that the
celi containing it should be added to the k-list during Pass Two. This sma!l fuxury is
made possible by the fact that only three quantities need be stored on behalf of such
cells. (A reserved atom is not necessiry for this job; any atom will do.) Figure 2(d)
shows the progress of Pass Two up to popping the k-list for the first time; it
corresponds to Figure 2(b) for Pass One. In Pass Two the k-list contains only those
cells known to have UV pointers in their cars, in other words, cells found with the atom

% in their cdrs.

Algorithm II, below, will copy the list at h into the area beginning at avail, and

terminate with v pointing to the copy. Step A5 cannot deal with cells having two AV

e et e

pointers; this problem will be remedied in Section 4.

A close examination of Step A5 will reveal that during Pass Two, the question of '} _
whether an original car or cdr is an AV or a UV pointer can be answernd without
/

fetching from memory the cell it points to. This permits the eight-way decision made {

' in Step A5 to be repeated in Step C4 by looking only at car and cdr of the original cell

and the copy. The importance of this will be seen in Section 4.




ALGORITHM 11
Pass One, Part A: Copy the top level of a list.
Al. [Initialize.] keNIL, veavail, xeh,
A2. [Get new cell.] ne«avail, availeavail+].
A3. [Save car and cdr.] a«car(x), decdr(x).
A4. [Store forwarding address.] car(x)en.
AS. [Process cell x.] Find the data types of a and d. If one is a list, check car of the
cell it points to to discover whether it is UV or AV. Go to the appropriate box
below:
d
atom AV list UV list
car(n)ea car(n)-a car(n)«a

cdr{n)-d cdr{n)ecar(d) cdr{n)avail
go to Bl go to Bl x+d

car(n)«car(a)
AV cdr(n)ea car(n)esa
list go to Bl cdr{n)k
ken
car(n)-a car(n)-a xed

uv cdr(n)«d cdr(n)-car(d)
list X+a X¢a

A6. [Loop.] Go to Step A2

Pass One, Part B: Find tne most recently seen sublist,
B1. [Done?] If k=NIL then go to Step C1.

B2. [Pop k-list.] tek, kecdr(k), xecar(t).

B3. [x already copied?] If new(car(x)) then cdr(t)ecar(t), car(t)-car(x), and go to Step
Bl.

BA4. [Leave marker, return to part A.] cdr(t)-#, and go to Step A2.
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Pass Two, Part C: Trace the top level of a list.
C1. [Initialize.] keNIL, availev, x¢h,
C2. [Get new cell.] ne«avail, avail«-avail+].

C3. [Savi car and cdr.] aecar(n), decdr(x). (Note car(n), not car(x). Note also that
car(n) may not be the original car(x); it might be the original cdr(x) Instead. See
Steps A5 and B2.)

CA. [Process cell x.] Find the data types of a and d, and go to the appropriste box
below:
d
atom list

car(x)«a car(x)ea.
go to D1 If cdr(n)=n+1 then x«d

Otherwise, go to D1.

If cdr(n) is an atom then If cdr(n)=¢ then car(x)«a,
car(x)ea, car(n)eavail, xea, cdr(n)ek, ken, xed.

If new(cdr(n)) then car(x)«s,
Otherwise, car(x)ecdr(n), car(n)-avail, xea,

cdr(n)-d, and go to D1.
Otherwise, car(x)cdr(n),
cdr(n)-avail, xed.

C5. [Loop.] Go to Step C2.

Pass Two, Part O: Find the most recently seen sublist.
D1. [Done?] If k=NIL then halt.
D2. [Pop k-list.] tek, kecdr(k), xecar(t), car(t)-avail, cdr(t)<t+1, and go to C2.

4. Copying arbitrary lists

We turn now to the problem of cells with two AV pointers. Since such cells

requir‘e, according to the current two-pass scheme, that five things be stored In four

-12-
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places, another method must be found for dealing with them. Two passes are not

sufficient.

We introduce, therefore, a special pass in between the current two, which will
handle these cells. Duririg the first pas+, no new values will be stored for them. The i
copy of such a cell will be in fact an exact copy of the original, the old car will get a
forwarding address (as it must), and the old cdr will be used to link all such cells

together on the "b-list",

After Pass One: is finished, the b-list will be processed. When a cell is removed
from the b-list, its original car and cdr will be restored by following the forwarding
address to the cell’s copy. Furthermore, the new values of car and cdr are the
forwarding addresses of the cells pointed to by the old car and cdr. Final values can |

therefore be given to both pointers of both cells.

Two questions arise about the use of this technique. First, how can we be sure
that the necessary forwarding addresses will still be there? Put another way, is it |
possible for a b-list cell to contain a pointer to a cell already removed from the b-list,
and whose forwarding address, therefore, is lost? It is plainly not possible, provided

the b-list is processed in LIFQ order.

Second, can we still guarantee that the second pass will be an exact replica of
the first? The problem here is that during Pass Two certain cells (those previously on
the b-list) will appear to have been visited already, when in fact they have not been.
But recall from Section 3 that there is enough information in the cell and its copy to

} reconstruct exactly which cell was visited next during Pass One, and whether pointers

3
!
g
—
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pointed to AV or UV ceils, without looking at the cells pointed to by the originai cer
and cdr. What will happen with former b-list celis is that they wiil be visited with the
expectation of finding a forwarding address in car; it it is missing, thon the celi was on

the b-iist.

Figure 3 shows how the b-list works. Figure 3(a) is the original ilst, and Figure
3(b) shows the state of atfairs just befors visiting a cell destined tor the b-list. Figure
3(c) shows the situation after the visit, which also marks the end of Pass One. Note

that the original car and cdr are stored in the copy of the cell.

Next comes the processing of cells on the b-list, during which final values are
written in each original cell and its copy. This is done in Figure 3(d). Pass Two then
begins. Figure 3(e) for Pass Two corresponds to Figure 3(b) for Pass One. It also
ilustrates the hazard of relying on forwarding addresses, instead of the trace order, to
set new values of UV pointers. Whereas car(k)}-car(car(k)) would have worked in
Figure 2(d), It will clearly fail in Figure 3(e) because car(car(k)) Is no longer &

forwarding eddress.

Algorithm Il can now be extended to cover arbitrary lists. First, cells with two
AV pointers should be put on the b-list (b should be initialized to NIL in Step Al). In

other words, the empty box in Step AS should be filled with the following:

car(n)+-a
cdri{n)ed
cdr(x)eb
bex

go to B1




Figure 3: Copying with the b-list.
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When Pass One finishes (at Step Bl), the following statements should be

executed:

1. [Done?] If b=NIL then go to Cl. (Begin Pass Two if the b-list is empty.)

2. [Pop b-list.] x«b, becdr(b), necar(x). (n points to the copy of x.)

3. [Set tinal values and loop.] aecar(n), cdr(x)}cdr(n), car(n)-car(car(n)),
cdr{n)ecar{cdr(n)), car(x)a, and go to Step 1. (car(x) is the last to be written
because of the possibility that x might contain a pointer to itself.)

One change must be made in Pass Two. Each new value of x must be checked to
see if it was on the b-list. If it was, car(x) will not be a forwarding address, and no

work will need to be done on either x or n. We insert, therefore, the following

statement between Steps C2 and C3:
C2.5 [Was x on b-list?] If new(car(x)) is false then go to Step D1.

Let Algorithm III denote Algorithm Il with these additions. The careful reader
will have noticed that Pass Two of Algorithm III can be simplified slightly it more cells
are put on the b-list during Pass One. Those cells eligible are ones containing one
atom pointer and one AV pointer. If AV pointers are rare overall, this change would
speed up Pass Two of the algorithm. Addition of these (few) cells to the b-list would
free the second pass of having to check for certain cases in Step C4. The savings
wou.ld thus be proportional to the number of cells with one atom pointer and one list
pointer (AV or UV); the cost would be proportional only to the number of cells with

one atom pointer and one AV pointer.




oy s - ] e i"--‘-f- 2 =T
o RN, g i, RN ..

i

S. Comparison with Fisher’s algorithm

Because Algorithm Il and Fisher’s algorithm are both linear in the number of
cells copied, a comparison of the two must look at how much computatational work is
done per cell, and not just at the number of cell visits. The analysis of this section and
the Appendix will measure how many times a list cell must be read or written by each
algorithm. This simplifies the comparison task considerably by ignoring such things as
arithmetic operations, instruction fetches, and the time required by LISP primitives
such as atom. For systems in which reading or writing a list cell is expensive relative
to, say, fetching an instruction--for example, a system where the copying algorithm is
microprogrammed or resides in a cache--the analysis done here realistically measures
the computational effort involved. In other systems the work measured here is just

part of the total.

The straightforward but tedious counting of memory accesses in the two
algorithms is done in the Appendix. The speed of each algorithm depends crucially on
the extent of multiple pointers to the same cell, For a given list structure, let a be the
fraction of cars which point to lists; let d be the fraction of cdrs which do. Let b be
the fraction of cells that go on the b-list in Algorithm III; let ky and k, be the fractions
of cells that go on the k-list during Pass One and Pass Two, respectively. The
Appendix shows that Algorithm III will execute

T= (5+2a+d+3b+2k1+2k2)n
reads and writes of list cells to copy an n-cell structure.

Fisher’s algorithm (as it appears, slightly optimized, in the Appendix) will execute

T = (10+2a+d+c1 +2¢co)n

=slii7s
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memory operations on list cells to copy an n-cell structure. The parameter c Is the

fraction of cells whose cars were UV pointers during the first pass of Fisher’s

algorithm; c, is the fraction of cells whose cdrs were AV pointers. Thus, for structures

with little sharing, ¢ is approximately a, and co is approximately zero.

We can easily show that T is always less than T'. Because no cell can be on
both the k-list and the b-list in either pass of Algorithm 1II, b+k;<1 and b+kpsl. Then

T= (5+2a+d+2(b+k1)+(b+k2)+k2)n S (9+42a+4d)n < T,

The relationships among the various parameters of T and T' can be seen if we
make one simplifying assumption. Observe that Algorithm 1II and Fisher’s algorithm do
not visit cells in the same order: where Algorithm Il processes deferred list cars in
LIFO order (via the k-list), Fisher’s algorithm uses FIFO order (via a sequential scan of
the copy, in the manner of Cheney [1]). This implies that an AV pointer for one
algoritt m may turn out to be a UV pointer for the other. The assumption we will make
is that the frequency of occurrence of AV pointers in car, in cdr, and in both, will be
the same for both algorithms. (Note that the total number of AV pointers must be the

same for both algorithms, independent of the assumption.)

Under this assumption, Figure 4 illustrates the relationships among the
parameters when cells are classified according to the table of Step A5 in Algorithm IIL
Note that the containment of one area by another (e.g, aiea b is contained by area c2)

does not mean that particular cells in the first category are necessarily in the second;

it means only that the number of cells in the first is no greater than the number of

cells in the second (e.g., bsco).
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Table I shows the number of list cell references that each algorithm would make
for a variety of n-cell list structures. Both ale - thms are at their best for a linear list
of atoms (Table 1(a)), but the extremes of relative performance come, as might be
guessed, when there is considerable sharing. Table I(c) shows the worst case
structure for Algorithm III relative to Fisher’s algorithm: a full binary tree whose leaf
nodes all contain two AV pointers. For such a structure, Fisher’s algorithm would

execute 1.26 times as many memory accesses as Algorithm 111

Algorithm 11l does best in comparison with Fisher’s algorthm for the structure of
Table 1(d): a list in which all cars are UV pointers (except, necessarily, one) and all cdrs
are AV pointers. For this structure, twice as many list-cell references take place In

Fisher’s algorithm as in Algorithm Iii.

Table I(e) uses parameter values derived from measurements of real list
structures in tive large LISP programs, reported in [2]). That study found that roughly
one third of cars and three fourths of cdrs pointed to lists. This means that the
fraction of pointers which were AV was 333+.75-1=.083, since for each list cell there
is exactly one UV pointer. If we assume that AV pointers were as commor among car
list pointers as among cdr list pointers, then the fraction of cells containing UV cars is
307, and the fraction containing UV cdrs is .692. This means that c;=307 and
cp=058. If we assume that car being a list is independent of cdr being & list, then

ky=333%.692=.23 and ky=307+.692=212. If AV pointers occur independently In car

and cdr, then b=.026%.058=.002. For structures with these characteristics, Fisher’s

algorithm will execute abrut 1.62 times as many list-cell references as will Algorithm

1L
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Memory References

Fishet's T
algorithm |Algorithm III T
LIST STRUCTURE T' T
(a) List of atoms
a=0, d=1, k]=k2=b=0, c]=c2=0 A . a3
n L
M NE IR 1N
(b) Balanced binary tree
asd=k;=k,=.5, b=0, c =.5, c =0
Bl Bl 12 o s.5n |
Y.
ey ey I ' Wy
(c) Worst case for Algorlthm [
a=d=1], k]=k =h=¢ =€
i 14.5 n 11.5 n 1.26
(d) Worst case for Fisher's algorithm
a=d=], k k =b=0, ¢, =c, =]
g} ;% aﬁa 16 n 8 n 2
(e) Typical LISP case from [2]
a=,333, d=,75, k_=.23, ko=, 202 11,84 n 7.3 n 1.62

b=.002, c = .307, c,= 0582

TABLE I:

values neglect terms of 0(1/n).

Comparison of Algorithm III and Fisher's algorithm,

Parameter

S




6. Conclusion

An algorithm has been given for copying arbitrarily linked LISP-type list

structures into a block of sequential memory locations without the use of a stack.

ons about computation time, the algorithm has been shown '
f

‘ Under some simple assumpti
that of Fisher [4]. The speed-up tfactor

to be faster than the best previous algorithm,

is between 1.26 and 2, and for some list structures found in practice is about 1.62.

!
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APPENDIX: Memory references in Algorithm III and Fisher’s algorithm

As discussed in Section 5, we will compare the two algorithms by counting the
number of times each must access memory to read or write a list cell. We assume that
car and cdr are contained in a single word of memory. We also assume a certain
amount of straightforward optimization with respect to this measure, e.g., if car(x) and
cdr(x) are both read (written) in a single iteration of an algorithm, we will say that one
memory read (write) has taken place. Operation counts will be functions of n, the
number of cells in the structure to be copied; of a, the fraction of cars which point to
lists; of d, the fraction of cdrs which point to lists; and of some additional terms

associated with one algorithm or the other.

Analysis of Algorithm III

Pass One. Each cell of the original structure is read once for every pointer to it,

The first of these reads occurs when.the trace first encounters that cell (Step A3); the

rest occur in order to obtain the forwarding address stored there (Steps AS and B3).
The number of list pointers, and therefore the number of reads of original cells, is
an+dn+1 (the 1 comes from the pointer root). More reads will occur when cells are
popped off the k-list in Step B2, If ky is the fraction of cells which are put on the k-
list in Step AS, then anolher kyn reads will occur, for a total of an+dn+kln+l during
Pass One. Write operations occur when each forwarding address is written in Step A4
(n writes), when each new cell is written in Step A5 (another n), and when cells on the

k-list have their contents altered in Step B3 or B4 (kyn writes). Thus 2n+kln write

operations will occur during Pass One.
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B-uis* Fuss. Let b be the fraction of cells which are put on the b-list. Then for
each b-list cell the following operations will occur: the original cell and its copy will be
read and written once each, and the cells pointed to by the original car and cdr will be

read to retrieve their forwarding addresses. The totals are 4bn reads and 2bn writes.

Pass Two. Cells formerly on the -list will be visited once (Step C2.5) and their
copies will be neither read nor written. Thus there will be n reads of original cells,
but 1-bn of copy cells. B-list cells have had their original cars restored already, s0
n-bn writes wiil occur for this purpose. Copy cells will be written in Step C4 if car Is
a list, but since copies of b-list cells never see Step C4, this wili contribute an-bn
writes. Let ko be the fraction of cells which go on the k-list in Step C4 (precisely

n i

those with "s" in their cdrs). Then kon reads and kon writes will occur in Stzp D2,

The totals for Pass Two are 2n-bn+k2n reads and n+an-2bn+k2n writes

The grand totals for Algorithm III are 2n+an+dn+3bn+k n+kon+l reads and

3n+an+k n+kon writes. Neglecting the single read on behalf of the pointer root, the
sum is

T = (5+2a+d+3b+2k | +2kp)n

memory accesses.




Fisher's algorithm

risher’s algorithm, slightly optimized and translated for easier comparison with

Algorithm IIlI, appears below. ror a thorough discussion of this algorithm, see [4].

Pass One
Al. [Initialize.] vejeavail, xeroot,
A2. [Get free cell.] neavail, availeavail+1.

A3. [Prccess cell x.] car(n)-car(x), decdr(x), cdr{x)en. (The forwarding address is
stored in cdr rather than car.) Go to the appropriate box below:

d
atom AV list UV list
cdr(n)ed cdr(n}-cdr{d) cdr(n)ed, xed
go to A2

A4. [Done?] If jzavail then go to Step Bl.

A5. [Get next car.] xecar(j), jej+l. (Note the sequential scan of the copy to find
sublists.) Go to the appropriate box below:

%
atom AV list UV list
go to A4 zar(j-1)ecdr(x) car(j-1)avail
go to A4 go to A2

Pass Two
Bl [Initialize.] nejev, xeroot.
B2. [Exchange cdrs.] decdr(n), cdr(x)ed, cdr(n)}-x, nen+l,

B3. [End of segment?] If d is an old list (i.e., not(atom(d)) and not(new(d))), then xe«d
and go to B2,

B4. [Done?] If jan then go to Step Cl.
B5. [Check car(j).] If car(i)=n then decar(cdr(j)), jej+1, and go to Step B3. Otherwise

jej+1 and go to Step B4. (car(j)=n iff car(j) was the next list traced during Pass
One.)
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Pass Three

Cl. [Scan in reverse order.] nen-l, xecdr(n), decdr(x).

C2. {Write final cdrs.] d points to an atom, a new list cell (new(d)), or an old list cell.
Go to the appropriate box below:

d
atom new list old list
cdr{n)ed cdrn)ed cdr{n)en+l
cdr{x)«cdr(d)

C3. [Done?] If n>v then go to Step Cl. Otherwice, availej and ha't.

Analysis of Figher's algorithm

Pass One. Just as in Algorithm [II, each cell of the original structure Is read once
for every pointer to it. Thus there are an+dn -1 reads of cells in the original list. In
Step A5 each copy cell is read once, so the total number of reads during Pass One is
n+an+dnil. Writes occur when forwarding addresses are written into original cells In
Step A3 (n writes), when copy cells are first created in Step A3 (n writes), and when
new list cars are written a second time in Step A5 (an writes). The tctal number of

writes is 2n+an.

Pass Two. All new cells are read in Steps B2 and BS, for a total of 2n reads.
One original cell is read each time car(j)=n in Step B5. This happens when car(j) was a
UV pointer during the Pass One; let ¢y be the fraction of cells for which this occurs.
Than 2n+cyn reads occur in Pass Two. Writes happen only in Step B2, in which each

cell In the original list and the copy has its cdr written, for a total of 2n.

Pass Three. Each cell in original and copy it read in Step Cl, for 2n reads.

-26-~




Every new cdr is written once in Step C2, for a total of n writes. Whenever d is a
new list in Step C2, one additional read and write are done. This condition

corresponds to cdr(x) having been an AV pointer during Pass One; let co be the

fraction of cells for which this happens. Then there are 2n+con reads and n+con

writes in Pass Three.

Summing over all three passes, there are Sn+an+dn+c n+con+l reads and
Sn+an+cyn writes. Neglecting the single read associated with root, the total is

T= (10+2a+d+c1+2c2)n

memory accesses.
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